Задание. На гипотенузе АВ и катетах ВС и АС прямоугольного треугольника АВС отмечены точки M, N и К соответственно, причем прямая NК параллельна прямой АВ и ВМ = ВN = 1/2КN. Точка Р – середина отрезка КN. а) Докажите, что четырехугольник ВСРМ – равнобедренная трапеция. б) Найдите площадь треугольника АВС, если ВМ = 1 и ∠ВСМ = 150. Решение: читать далее… Задание. В треугольнике АВС известно, что ∠ВАС = 60°, ∠АВС = 45°. Продолжения высот треугольника АВС пересекают описанную около него окружность в точках M, N, P. а) Докажите, что треугольник MNP прямоугольный. б) Найдите площадь треугольника MNP, если известно, что ВС = 10. Решение: читать далее… Задание. В треугольнике АВС известно, что ∠ВАС = 60°, ∠АВС = 45°. Продолжения высот треугольника АВС пересекают описанную около него окружность в точках M, N, P. а) Докажите, что треугольник MNP прямоугольный. б) Найдите площадь треугольника MNP, если известно, что ВС = 6. Решение: читать далее… Задание. Основание и боковая сторона равнобедренного треугольника равны 34 и 49 соответственно. а) Докажите, что средняя линия треугольника, параллельная основанию, пересекает окружность, вписанную в треугольник. б) Найдите длину отрезка этой средней линии, заключенного внутри окружности. Решение: читать далее… Задание. Окружность с центром О, вписанная в треугольник АВС, касается его сторон АВ, АС и ВС в точках С1, В1 и А1 соответственно. Биссектриса угла А пересекает эту окружность в точке Q, лежащей внутри треугольника АВ1С1. а) Докажите, что С1Q – биссектриса угла АС1В1. б) Найдите расстояние от точки О до центра окружности, вписанной в треугольник АС1В1, если известно, что ВС = 11, АВ = 13, АС = 20. Решение: читать далее… |
Рубрики
|